3.3.52 \(\int \frac {\sin (a+\frac {b}{(c+d x)^{2/3}})}{\sqrt [3]{c e+d e x}} \, dx\) [252]

Optimal. Leaf size=122 \[ -\frac {3 b \sqrt [3]{c+d x} \cos (a) \text {Ci}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 (c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 b \sqrt [3]{c+d x} \sin (a) \text {Si}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}} \]

[Out]

-3/2*b*(d*x+c)^(1/3)*Ci(b/(d*x+c)^(2/3))*cos(a)/d/(e*(d*x+c))^(1/3)+3/2*b*(d*x+c)^(1/3)*Si(b/(d*x+c)^(2/3))*si
n(a)/d/(e*(d*x+c))^(1/3)+3/2*(d*x+c)*sin(a+b/(d*x+c)^(2/3))/d/(e*(d*x+c))^(1/3)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {3516, 3462, 3460, 3378, 3384, 3380, 3383} \begin {gather*} -\frac {3 b \cos (a) \sqrt [3]{c+d x} \text {CosIntegral}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 b \sin (a) \sqrt [3]{c+d x} \text {Si}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 (c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[a + b/(c + d*x)^(2/3)]/(c*e + d*e*x)^(1/3),x]

[Out]

(-3*b*(c + d*x)^(1/3)*Cos[a]*CosIntegral[b/(c + d*x)^(2/3)])/(2*d*(e*(c + d*x))^(1/3)) + (3*(c + d*x)*Sin[a +
b/(c + d*x)^(2/3)])/(2*d*(e*(c + d*x))^(1/3)) + (3*b*(c + d*x)^(1/3)*Sin[a]*SinIntegral[b/(c + d*x)^(2/3)])/(2
*d*(e*(c + d*x))^(1/3))

Rule 3378

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m
 + 1))), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3460

Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Sin[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Simpl
ify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))

Rule 3462

Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]), Int[x^m*(a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] &&
 IntegerQ[Simplify[(m + 1)/n]]

Rule 3516

Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Dist[1/f, Subst[Int[(h*(x/f))^m*(a + b*Sin[c + d*x^n])^p, x], x, e + f*x], x] /; FreeQ[{a, b, c, d, e, f, g,
 h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0]

Rubi steps

\begin {align*} \int \frac {\sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{\sqrt [3]{c e+d e x}} \, dx &=\frac {\text {Subst}\left (\int \frac {\sin \left (a+\frac {b}{x^{2/3}}\right )}{\sqrt [3]{e x}} \, dx,x,c+d x\right )}{d}\\ &=\frac {\sqrt [3]{c+d x} \text {Subst}\left (\int \frac {\sin \left (a+\frac {b}{x^{2/3}}\right )}{\sqrt [3]{x}} \, dx,x,c+d x\right )}{d \sqrt [3]{e (c+d x)}}\\ &=-\frac {\left (3 \sqrt [3]{c+d x}\right ) \text {Subst}\left (\int \frac {\sin (a+b x)}{x^2} \, dx,x,\frac {1}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}\\ &=\frac {3 (c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}-\frac {\left (3 b \sqrt [3]{c+d x}\right ) \text {Subst}\left (\int \frac {\cos (a+b x)}{x} \, dx,x,\frac {1}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}\\ &=\frac {3 (c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}-\frac {\left (3 b \sqrt [3]{c+d x} \cos (a)\right ) \text {Subst}\left (\int \frac {\cos (b x)}{x} \, dx,x,\frac {1}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {\left (3 b \sqrt [3]{c+d x} \sin (a)\right ) \text {Subst}\left (\int \frac {\sin (b x)}{x} \, dx,x,\frac {1}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}\\ &=-\frac {3 b \sqrt [3]{c+d x} \cos (a) \text {Ci}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 (c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}+\frac {3 b \sqrt [3]{c+d x} \sin (a) \text {Si}\left (\frac {b}{(c+d x)^{2/3}}\right )}{2 d \sqrt [3]{e (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 90, normalized size = 0.74 \begin {gather*} \frac {3 \left (-b \sqrt [3]{c+d x} \cos (a) \text {Ci}\left (\frac {b}{(c+d x)^{2/3}}\right )+(c+d x) \sin \left (a+\frac {b}{(c+d x)^{2/3}}\right )+b \sqrt [3]{c+d x} \sin (a) \text {Si}\left (\frac {b}{(c+d x)^{2/3}}\right )\right )}{2 d \sqrt [3]{e (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b/(c + d*x)^(2/3)]/(c*e + d*e*x)^(1/3),x]

[Out]

(3*(-(b*(c + d*x)^(1/3)*Cos[a]*CosIntegral[b/(c + d*x)^(2/3)]) + (c + d*x)*Sin[a + b/(c + d*x)^(2/3)] + b*(c +
 d*x)^(1/3)*Sin[a]*SinIntegral[b/(c + d*x)^(2/3)]))/(2*d*(e*(c + d*x))^(1/3))

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\sin \left (a +\frac {b}{\left (d x +c \right )^{\frac {2}{3}}}\right )}{\left (d e x +c e \right )^{\frac {1}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(1/3),x)

[Out]

int(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(1/3),x)

________________________________________________________________________________________

Maxima [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.46, size = 125, normalized size = 1.02 \begin {gather*} -\frac {3 \, {\left ({\left (\Gamma \left (-1, i \, b \overline {\frac {1}{{\left (d x + c\right )}^{\frac {2}{3}}}}\right ) + \Gamma \left (-1, -i \, b \overline {\frac {1}{{\left (d x + c\right )}^{\frac {2}{3}}}}\right ) + \Gamma \left (-1, \frac {i \, b}{{\left (d x + c\right )}^{\frac {2}{3}}}\right ) + \Gamma \left (-1, -\frac {i \, b}{{\left (d x + c\right )}^{\frac {2}{3}}}\right )\right )} \cos \left (a\right ) + {\left (-i \, \Gamma \left (-1, i \, b \overline {\frac {1}{{\left (d x + c\right )}^{\frac {2}{3}}}}\right ) + i \, \Gamma \left (-1, -i \, b \overline {\frac {1}{{\left (d x + c\right )}^{\frac {2}{3}}}}\right ) - i \, \Gamma \left (-1, \frac {i \, b}{{\left (d x + c\right )}^{\frac {2}{3}}}\right ) + i \, \Gamma \left (-1, -\frac {i \, b}{{\left (d x + c\right )}^{\frac {2}{3}}}\right )\right )} \sin \left (a\right )\right )} b e^{\left (-\frac {1}{3}\right )}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(1/3),x, algorithm="maxima")

[Out]

-3/8*((gamma(-1, I*b*conjugate((d*x + c)^(-2/3))) + gamma(-1, -I*b*conjugate((d*x + c)^(-2/3))) + gamma(-1, I*
b/(d*x + c)^(2/3)) + gamma(-1, -I*b/(d*x + c)^(2/3)))*cos(a) + (-I*gamma(-1, I*b*conjugate((d*x + c)^(-2/3)))
+ I*gamma(-1, -I*b*conjugate((d*x + c)^(-2/3))) - I*gamma(-1, I*b/(d*x + c)^(2/3)) + I*gamma(-1, -I*b/(d*x + c
)^(2/3)))*sin(a))*b*e^(-1/3)/d

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(1/3),x, algorithm="fricas")

[Out]

integral(e^(-1/3)*sin((a*d*x + a*c + (d*x + c)^(1/3)*b)/(d*x + c))/(d*x + c)^(1/3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sin {\left (a + \frac {b}{\left (c + d x\right )^{\frac {2}{3}}} \right )}}{\sqrt [3]{e \left (c + d x\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)**(2/3))/(d*e*x+c*e)**(1/3),x)

[Out]

Integral(sin(a + b/(c + d*x)**(2/3))/(e*(c + d*x))**(1/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(1/3),x, algorithm="giac")

[Out]

integrate(sin(a + b/(d*x + c)^(2/3))/(d*x*e + c*e)^(1/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sin \left (a+\frac {b}{{\left (c+d\,x\right )}^{2/3}}\right )}{{\left (c\,e+d\,e\,x\right )}^{1/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b/(c + d*x)^(2/3))/(c*e + d*e*x)^(1/3),x)

[Out]

int(sin(a + b/(c + d*x)^(2/3))/(c*e + d*e*x)^(1/3), x)

________________________________________________________________________________________